Oxygen Uptake Rate Fingerprints

Oxygen uptake rate (OUR) fingerprints can reveal a great amount of detail about the manner in which treatment plants degrade the organic constituents of a wastewater. EnviTreat specializes in conducting OUR fingerprints and evaluating the data. Some examples are shown below:

Pharmaceutical Wastewater

The OUR fingerprints for this wastewater include a first peak of about 500 mg/L-hour within the first hour of contact that represents the oxidation of highly-biodegradable organic constituents. A second group of readily biodegradable constituents caused a second high OUR peak between 1 and 2 hours. The relative position of OUR curves suggests that this peak represented the biodegradation of the MCB test chemical. This second OUR peak was followed by oxidation of a slowly degrading group of organic constituents that were completely oxidized between 5 and 7 hours of contact. Oxygen uptake between 7 and 13 hours represents the biodegradation of a final group of constituents—possibly nitrification—before the OUR returns to endogenous rates. The fact that the OUR returned to endogenous rates indicates that essentially all the organic constituents of the wastewater were degraded.
A pulp mill was interested in evaluating the impact of increasing organic loading rates on the performance of their activated sludge systems. In this case, the wastewater and biomass concentrations were varied to give food-to-microorganism (F/M) ratios of 0.5:1, 1:1, and 1.5:1. Test temperature was 35°C. Specific oxygen uptake rate (SOUR = OUR/M) fingerprints show a high rate of oxidation of readily biodegradable organic constituents. One peak occurs within 1 hour of test initiation. A second peak occurs between 1 and 4 hours of contact for the 1:1 and 1.5:1 F/M ratios. This reaction occurs at the low F/M test conditions but is superimposed on the first high-rate peak of oxygen uptake. At the higher F/M ratios, insufficient organisms are present initially to oxidize the wastewater at maximum rates but grow rapidly to complete the OUR reactions within 4 hours. The oxidation of readily biodegradable organic constituents is followed by a long tail of slowly degrading constituents. In this case, the SOUR curve for the 0.5:1 F/M ratio represents the basic fingerprint for this plant. The SOUR curves for the 1:1 and 1.5:1 F/M ratio indicate that the activated sludge process would require several hours more contact time to allow complete oxidation of the organic constituents of the wastewater. The fact that the OUR does not reach endogenous rates after 20 hours of contact indicates that the oxidation of organic wastewater constituents had not been completed.
Chemical Production Wastewater

OUR Fingerprints for two waste streams from a chemical production plant indicated the presence of three major groups of organic constituents. The first group of readily biodegradable organic constituents is oxidized at OUR through about 1 hour of contact. Oxidation of a second group of constituents causes the OUR to increase through about 3.5 hours of incubation. This increase in OUR is caused by growth of microorganisms during the oxidation reaction. Oxidation of a third group of constituents—in this case, thought to be nitrification—extends beyond six hours of contact. The test was terminated before the reaction was complete. The OUR fingerprint for Waste 2 shows a sharp biodegradation peak for readily biodegradable organics followed by a small plateau between one and 1.5 hours. The fact that the OUR for Waste 2 returned to endogenous within 5 hours indicates that the biodegradation reaction was essentially complete.
Toxicity Assessment Using a Dilution Series

Toxicity, or more appropriately, inhibition, is a measure of the interference of a compound or compounds with biodegradation. Since inhibition usually is expressed as the interference with bioconversion of an oxygen-consuming reaction, or gas producing reaction in the case of anoxic or anaerobic reactions, it is essential that a biodegradable substrate be present when assessing toxicity of specific compounds. A dilution series is one of the most common approaches used to assess toxicity. The test procedure usually consists of: (1) adding a seed culture to a number of respirometer vessels, (2) adding biodegradable substrate, (3) adding adequate amounts of nutrients and minerals to support biological growth and a buffer to maintain pH within a suitable range, and (4) adding the suspected inhibitory chemical or wastewater to produce a range of test concentrations. The number of dilutions should be based on the anticipated range of exposure of the subject chemical or wastewater to a receiving treatment process. An example of a dilution series using four concentrations of phenol—and a measured using a Challenge AER-200 respirometer system—is shown in Figure A. The increasing lag time with OURs increasing to a maximum is a fingerprint for substrate inhibition reactions. An example using wastewater from a petrochemical industry is shown in Figure B. The test program involved analysis of four dilutions of wastewater plus a control. The control in this case was wastewater from the process that would receive the test industrial wastewater. The relative relationship between dilutions showed increased lag and declining OURs as wastewater concentration increased toward full strength. The first plateau around 20% of chemical oxygen demand (COD) represents the completion of the biodegradation reaction for the first of at least three groups of organic constituents. The fact that the OUR increased gradually to essentially the same maximum for each dilution is characteristic of substrate inhibition. The oxidation of the second group of organic constituents was complete at around 60% of the COD. Subsequent tests indicated that this wastewater could be added to a regional wastewater treatment process at volume ratios up to 25% of the total flow without contributing significantly to risk of failure.
Assessment of Acute Toxicity to Treatment Plants

Situations often occur where rapid assessment of potential toxicity to a treatment process is needed, for example, when hauled wastes are discharged to treatment plants. In these cases, the test wastewater is added in various ratios to a mixed liquor suspension along with an organic substrate that is known to degrade well by the test culture. Acetate seems to work well in most cases. Increases in oxygen uptake above that for the control substrate indicate a lack of toxicity as shown in Figure A. Decreases in oxygen uptake relative to the control indicate potential toxicity as illustrated in Figure B. More detailed respirometric assessments—such as those provided by OUR fingerprint analysis—can provide additional insight into the impact of these wastewaters on treatment plant performance.
Biodegradation Tests for Wastewater Samples

Biodegradation tests usually involve comparison of the oxygen uptake of a test sample—or gas production for anoxic or anaerobic tests—to that for a readily biodegradable control substrate (usually acetic acid, ethanol, or aniline). While biodegradation characteristics can vary among chemical types and wastewater sources, typical patterns are shown in Figure A. The curve labeled CONTROL represents oxygen uptake of readily biodegradable substances. The curve labeled INHIBITION represents oxygen uptake for chemicals that show toxic impacts or low rates of biodegradation. When acclimation is required, a delay in oxygen uptake will occur, but the initial rates of oxygen uptake will be similar to that for the seed culture. An example is shown in Figure B. In this case, 10 and 50 mL of an industrial waste were added to respective 500-mL seed cultures consisting of municipal wastewater and aerobic microorganisms. The 10-mL dose (2% by volume) caused no adverse impact on the oxygen uptake of the seed culture and acclimation occurred after about 70 hours of incubation. However, the 50-mL dose (10% by volume) of industrial waste showed inhibition of oxygen uptake early in the test followed by acclimation and biodegradation. Additional tests indicated that the industrial waste could be added to the municipal treatment process in quantities representing less than 5% of the municipal wastewater volume.
Biodegradation Protocols

A number of protocols have been developed to standardize evaluations of the biodegradability of specific compounds or formulations (ISO 9408, 1999; OECD 301, 1992; USEPA 835, 1998). These protocols usually involve long-term (14- to 28-day) testing to evaluate the extent to which a compound is oxidized relative to its theoretical oxygen demand (THOD) or measured COD. These test protocols involve the following steps:

1. Add 100 mg/L of test organic, or no less than 100 mg/L THOD (or COD), to a test vessel.
2. Add no more than 30 mg VSS/L as a seed culture.
3. Run simultaneous tests with a reference compound (usually aniline, benzoate, or acetate).
4. Measure oxygen uptake for 28 or more days and compare to THOD or TCOD.
5. Oxygen uptake of 60% or more of THOD or COD in 28 days shows “ready biodegradability.”

An example of tests for an organic-based cleaning agent using aniline as a reference compound is shown in the figure below. The test revealed the following:

1. Biodegradation of the test product began earlier than the control (aniline), thereby indicating that no acclimation was required.
2. The fact that the oxygen uptake curves for the two test doses were the same indicated that the test compound was not toxic.
3. The fact that the oxygen uptake for the test compound exceeded 60% of the THOD in 28 days indicates that the formulation was readily biodegradable.
4. The fact that the oxygen uptake for the test compound was only 65% of theoretical after 28 days of incubation implies that one or more constituents were not biodegradable.

Results of ready biodegradability test for an organic cleaning agent

![Graph showing ISO 9408 TEST RESULTS with oxygen uptake percentage over time for different concentrations of the product and aniline.](image)
Assessing Nutrient Deficiencies

Tests conducted by EnviTreat can be used to assess the occurrence of nutrient deficiencies as illustrated in the figure below. In this case, various amounts of a mixture of nutrients and trace minerals were added to different test vessels that received 25 mL of wastewater plus seed organisms. The resulting oxygen uptake reactions show increasing oxygen uptake with additional nutrients and minerals until adequate concentrations were reached. Additional tests revealed that the sample was deficient in calcium. These tests also show that several hours of incubation may be required to show the full effect of a nutrient deficiency.
Extant Kinetics of Mixed Wastewaters

OUR fingerprints can be used to estimate kinetic parameters for the wastewater constituents as shown in Figures A and B below. Wastewater A contained one group of readily degraded compounds and one group that was degraded at lower rates. A third region of oxygen uptake was caused by nitrification. Kinetic modeling by EnviTreat’s environmental engineers suggested that the biodegradation of each constituent followed classical Monod kinetics. Wastewater B contained a group of readily biodegradable constituents and two more-slowly degrading constituents. The primary constituent followed classical Monod kinetics; however, a second group of compounds was controlled by hydrolysis as indicated by the first-order decrease in OUR. Nitrification was a small part of the remaining OUR. Biomass growth and biodegradation coefficients for these two wastewaters are listed in Table 1. As indicated, the active biomass concentration involved in specific reactions was quite low.

![MIXED INDUSTRIAL WASTE KINETICS](image)

Table 1. Biomass Growth and Kinetic Coefficients Associated with Biodegradation of the Constituents of the Industrial Wastes described in Figures A and B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wastewater #1</th>
<th>Wastewater #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S<sub>1</sub></td>
<td>S<sub>2</sub></td>
</tr>
<tr>
<td>COD, mg/L</td>
<td>55</td>
<td>85</td>
</tr>
<tr>
<td>X<sub>a</sub>, mg/L</td>
<td>235</td>
<td>110</td>
</tr>
<tr>
<td>X<sub>a</sub>, % MLVSS</td>
<td>9.04</td>
<td>4.23</td>
</tr>
<tr>
<td>Yg, mg/mg</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>qm, /day</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>K<sub>s</sub>, mg/L</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>b, /day</td>
<td>0.30</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Intrinsic Biodegradation Kinetics of Chemicals

An understanding of the rate of biodegradation kinetics for specific industrial chemicals is useful when evaluating their treatability or their impact on treatment processes. The objective of kinetic assessments usually is to model the biodegradation reactions for specific chemicals using either pure cultures or defined mixed cultures, or natural mixed culture systems such as those that occur in treatment processes. Measurement of the biodegradation kinetics of organic chemicals usually is accomplished by dosing a microbial culture with a defined amount of organic chemical or wastewater followed by monitoring the reactions through measurement of oxygen uptake in aerobic tests or gas production in anoxic and methanogenic tests. Kinetic models are then fit to the oxygen uptake data using non-linear curve-fitting techniques to produce estimates of the kinetic parameters. Examples of intrinsic kinetic tests are shown in Figures A and B. Figure A shows data for aniline biodegradation. In this case, sufficient information was available to model the residual soluble COD and the biomass concentrations. Figure B shows data for phenol. In this case, phenol was inhibitory to its own biodegradation until the concentration was reduced to below toxic levels.
Aerobic Treatment of Oily Soil

An oily soil from a refinery site contained 4.7% hydrocarbons by weight. The total COD of the soil was 55,000 mg/L. Tests were conducted by EnviTreat's Environmental Engineers to determine if Tween-80, a surfactant, enhanced the biodegradation of the oily contaminants in the soil. Samples of the oily soil were added to individual test reactors. Tween-80 was added on one set of samples at a T-80:soil ratio (w/w) of 1:10. The tests were conducted for 52 days without interruption.

Oxygen uptake tests showed that Tween-80 enhanced the biodegradation of the organic materials in the soil sample. Without T-80, the 52-day oxygen uptake represented 30% of the COD while with T-80, the 52-day oxygen uptake represented 67% of the COD as shown in the accompanying figure. (All data have been corrected for dilution and for the contribution of seed organisms to the oxygen uptake).
Aerobic Biomass Activity Tests

The success of biological treatment plants depends almost entirely on the health and activity of the biomass in the process. EnviTreat has developed a reliable means for determining biomass activity in carbonaceous reactions, nitrification reactions, anoxic denitrification reactions, and anaerobic reactions. The method used for carbonaceous reactions involves measuring oxygen uptake in the presence of acetate as a sole carbon source. The oxygen uptake data are then analyzed using a model developed by EnviTreat that is based on well-known kinetic and biological growth relationships. An example is shown in the figure below. In this case, the figure to the left shows oxygen uptake measured in the presence of a nitrification inhibitor. The resulting analysis indicated the presence of a substantial amount of slowly biodegradable materials that were formed as biopolymers during treatment or by co-flocculation of particulate matter into the mixed liquor solids (the blue shaded area). The figure to the right shows oxygen uptake in the absence of a nitrification inhibitor. The green shaded area shows the OUR attributable to nitrification. In this case, the analysis indicated that only 2.4% of the volatile solids in the mixed liquor was represented by active microorganisms. Activities for conventional activated sludge process usually range from 15 to 30%. Low activity can be caused by toxic impacts, discharge of inert organic solids into the aeration basin, or excessively high solids retention times. Identification of the causes of the low activity can help to improve the long-term stability and performance of the treatment process.
Anaerobic Biomass Activity Tests

The methane production activity of anaerobic sludges is related to the history of the sludge, the biomass yield from the wastewater the sludge has been treating, fraction of methanogens, and presence of toxic substances. Best performance can be achieved from an anaerobic treatment plant if the operator measures the Specific Methanogenic Production (SMP) of the biomass contained within the sludge. The SMP is measured by placing a known amount of biomass in a respirometer vessel, adding a known amount of substrate—usually acetic acid—to the bottle at concentrations sufficient to cause maximum biomass activity, and measuring the resulting methane. The SMP is expressed as the COD equivalent of the methane production rate per gram of volatile solids, or gm COD/gm VSS/d. An example of an SMP measurement is shown in the figure below. Figure A shows methane production measured over a 3-day period. Figure B shows the calculated specific methane production rate. The maximum specific methane production rate represents the SMA—or the activity—of this sludge sample. SMAs between 1.0 and 2.0 indicate a highly active biomass. An SMA of 1.5 g COD/g VSS-d indicates that the biomass is 25% methanogens by weight.
Anaerobic Biochemical Methane Potential and ATA Tests

Biochemical methane potential (BMP) tests involve addition of test chemicals or wastewater samples of concern to an anaerobic culture that is contained within a sealed vessel. Methane or total gas production is measured over periods ranging from 1 to 60 days without addition of new chemical or wastewater sample. Modern BMP tests usually involve multiple additions of substrate or wastewater to anaerobic reactors over 3-60 days to assess the ability for sustained biodegradation. Example BMP test data are shown in Figure A for three wastewater streams as compared to an ethanol control when using a Challenge AER-200 aerobic/anaerobic respirometer system. In this case, substrate injections were made on 3 consecutive days and the methane production was expressed as mL/g COD added. These data show that only about 75% of the COD in Stream 1 and 50% of the COD in Stream 2 was converted to methane. The mixture showed COD conversion between 50 and 75%. The fact that the initial rate of methane production was the same as that for the control indicates that the wastewater streams contained no toxic substances. ATA tests involve addition of test chemical or wastewater plus a biodegradable organic substrate—ethanol, acetate, benzoate, etc.—to anaerobic cultures contained within sealed vessels. Concentrations of test materials range from 0 (Control) to 2-4 times anticipated field concentrations, in effect, a dilution series. Example ATA test results are shown in Figure B when testing the effect of a sanitizing agent on anaerobic the activity of an anaerobic culture. These tests indicated that mild inhibition occurred at a chemical dose as low as 12 mg/L. Inhibition increased with increasing dose of test chemical. A concentration of 120 mg/L produced a 50% decrease in methane production rate. Note that it is essential to measure methane gas production on an hourly or more frequent basis. Measuring cumulative methane production after 24 hours would have shown no toxic impacts.
Anaerobic Methane Potential from Sludges

Questions often arise as to how much residual biodegradable matter remains in sludges from biological processes after previous treatment has been completed (EPA’s F-bio test). In one case, sludge samples were removed from two facultative lagoons. Tests were conducted to determine the methane potential remaining in the sludges and to determine if the sludges were suitable for land spreading. Samples of the sludge containing 20.5 and 22.7 g VSS were transferred to respective reaction vessels and methane production was measured over a period of 18 days. Methane production ranged from 120 mL in one sample to 160 in the second sample as shown in the figure below. The gas production rate was high for only about 2 days and then leveled off to a rate of about 4 mL/day. The COD conversion equivalent of the produced gas was only about 0.3-0.4 g per sample, thereby representing VSS conversions of 1.47 and 1.76 %. The sludge was then deemed to be suitable for land application without further treatment.

![Graph showing methane production over time for two sludge samples](image-url)